多语言展示
当前在线:261今日阅读:113今日分享:31

实现零电压开关的同时能减小副边占空比丢失方法

ZVS PWM DC—DC移相全桥变换器的滞后桥臂实现ZVS比较困难,特别是滞后桥臂开关管在轻载下难以实现ZVS,使得它不适合应用于负载大范围变化的场合。为了让滞后臂实现ZVS更加容易,需要增大原边电流。原边电流的增大可以靠增加励磁电流(主变压器加气隙,减小励磁电感),或增大漏感(或外加的谐振电感)来实现。但上述方法均会增加占空比的丢失。可以发现占空比丢失与ZVS软开关条件存在矛盾,所以谐振电感Lr的大小需要折衷选择。
实现方法
1

将移相ZVS变换器中的线性谐振电感改用饱和电感。如图2(a)所示。饱和电感的特性是:当脱离饱和时,表现为一个很大的电感;当其进入饱和状态时,又表现为一个很小的电感。但该电路不足之处就是饱和电感以很高的频率在正负饱和值之间切换,磁芯损耗会很大,温度也会很高。 滞后桥壁实现ZVS、减少副边占空比的辅助网络 在滞后臂增加辅助电路改善滞后臂开关管的软开关环境,其基本方法是给滞后臂并联一辅助谐振电路,利用辅助谐振电路中的电感帮助漏感实现滞后臂开关管的零电压开关,使其在任意负载和输入电压范围内实现零电压开关,并且大大减小占空比丢失。图2(b)增加了一个LC电路,漏电感和辅助电路的电感电流同时给并联电容充放电,从而在较宽的负载范围内实现滞后桥臂的ZVS。

2

抑制整流桥寄生振荡   关于抑制整流桥寄生振荡的缓冲电路,国内外文献提出了各种电路拓扑,下面介绍常用的RC缓冲电路和主动钳位缓冲电路。   (1)RC缓冲电路。在图3(a)中,增加一个由Rs和Cs组成的串联支路分别并联在四个整流管的两端。利用二极管上的并联RC支路起钳位作用,并且电容Cs的电荷都释放在电阻Rs上。因此,这种吸收网络是有损耗的,相当于把整流二极管的关断损耗转移到了RC缓冲电路上,因而不利于提高变换器的效率。   (2)主动钳位缓冲电路。图3(b)是一种主动钳位电路,它由钳位开关管VTs、钳位二极管VDs和较大容量的钳位电容Cs组成。这种缓冲电路也可以将整流桥上的电压钳位在一个适当的电压值。由于该缓冲电路中没有电阻,而且VTs要求是零电压开关,因而没有损耗。但它增加了一个开关管,因而也增加了一套控制电路和驱动电路,也就增加了电路的复杂性。 END

推荐信息