多语言展示
当前在线:368今日阅读:84今日分享:32

基于GPRS&GPS的防盗追踪系统的设计方案

防盗追踪系统集合了GPRS 技术、GPS 技术、传感器技术、计算机控制技术等多项技术, 可广泛应用于野外基站、 电力、煤炭、市政、交通等部门行业的设备远程监控、防盗。目前常用的防盗监控系统通常只能做到监视设备是否丢失, 以及在设备被盗时发出警报。但是如果用户响应慢, 即使发现东西被盗, 也无能为力。防盗追踪系统正是针对这点而设计的, 不但能实时监控设备, 在设备被盗时发出警报, 而且即使用户来不及阻止, 也能在被盗后继续追踪定位设备的位置, 并能找回被盗设备, 从而避免了损失。
工具/原料
1

技术简介

2

GPS 技术

3

系统硬件设计

4

系统软件设计

5

结束语

步骤/方法
1

1 技术简介1. 1 GPRS总述GPRS 是通用分组无线服务技术( general packet radio service) 的简称, 它是GSM 移动电话用户可用的一种移动数据业务, 位于第二代( 2G) 和第三代( 3G ) 移动通讯技术之间。它通过利用GSM 网络中未使用的T DMA 信道, 提供中速的数据传递。GPRS 突破了GSM 网只能提供电路交换的思维方式, 只通过增加相应的功能实体和对现有的基站系统进行部分改造来实现分组交换, 这种改造的投入相对来说并不大, 但得到的用户数据速率却相当可观。而且, 因为不再需要现行无线应用所需要的中介转换器, 所以连接及传输都会更方便容易。1. 2 GPRS 技术特点相对于GSM 的9. 6 Kbps 的访问速度而言, GPRS 拥有171. 2 Kbps 的访问速度; 在连接建立时间方面, GSM需要10~ 30 s, 而GPRS 只需要极短的时间就可以访问到相关请求; 对于费用, GSM 是按连接时间计费的, 而GPRS 只需要按数据流量计费; GPRS 对于网络资源的利用率而相对远远高于GSM。

3

3 系统硬件设计3. 1 电源部分系统采用锂电池供电, 供电电压为3. 6 V , 而GPRS模块的工作电压为4 V, 系统其他部分则为3. 3 V。由于采用的是电池供电, 因而在低功耗方面有严格的控制, 这就要求在电源管理方面必须科学管理系统的各部分功耗。本设计采用了多个带使能控制引脚的电源芯片, 对于不需要工作的模块, 则用处理器关掉其供电, 只有在需要的时候, 重新打开开关, 从而做到电能的节约使用, 大大降低系统功耗。系统电源部分设计如图3 所示。GPRS、GPS 分别采用带使能控制的电源芯片LT3125 和LP3996 进行供电。图3 电源系统 正常情况下, MCU 关断这2 个模块的电源, 只间隔一定的时间启动这两个模块报告设备状况。当传感器一旦检测到有异动, 处理器马上打开这2 个模块的供电, 使用GPS进行位置定位, GPRS 向用户发送设备状况以及报警。L T3125 的一款DC-DC 电源芯片, 输入电压可在1. 8~ 5. 5 V, 输出在2~ 5 V 可调, 输出峰值电流1. 2 A, 并带使能控制开关。此芯片刚好能满足本系统的要求, 在电池低于3. 6 V, 一直到1. 8 V 也能确保GPRS 能正常工作。L P3996 是美生产的一款带控制开关的LDO 芯片, 能把3. 6 V 输入电压转成3. 3 V 电压稳定输出, 具有低纹波特点, 刚好满足GPS 模块低纹波输入要求。#p#副标题#e#3. 2 处理器与通信模块GPRS 与GPS 模块都是通过UA RT 接口对外进行通信, 如图4 所示。GPRS 模块对外的接口为一个标准的9线U ART 接口, 其电平为2. 8 V, 而处理器的电平为3. 3V, 因此在GPRS 模块与处理器之间需要有一个电平转换的buffer , 实现接口的电平匹配。系统采用的是IDT74FCT 3244Q8 作为电平转换的芯片。GPS 模块也是通过一个U ART 串行接口与单片机进行通信, 此串行接口使用起来比较简单, 只有收发2 根线。图4 GPRS、GPS 通信模块处理器采用的是ATMEL 公司的A T91SAM7S 系列的A RM7 芯片, 具有3 个U ART , 其中一个为标准的9 线串口, 8 路A D, 内嵌512K 的Flash, 能满足系统的需求。GPRS 模块则采用的是WAV ECOM 公司的Q 24PLUS 型号, 此模块集成了T CP/ IP 协议栈, 对外的接口为一9 线标准串口, 通过此串口利用AT 指令控制模块, 能够实现数据的透明传输。支持GSM、GPRS 网络, 以及4 频段载波。GPS 模块采用的是U blox 公司的LEA-5H 型号,支持冷热双启动模式、快速定位, 内含RAM, 在有后备电池的情况下能保存位置信息, 实现快速热启动。输出的信息为国际标准的NMEA 格式的字符串, 对外接口为2 线串行接口, 用户只需接收NMEA 字符串, 并按格式提取相应信息即可。3. 3 处理器与传感器传感器采用的是Analog Device 生产的一款三维重力加速度传感器, 其型号是ADXL335, 此传感器 能精确的实时的测量三维方向上的加速的大小, 并量化成电压值从3个接口输出, 用户只需测量这3 个电压值的大小, 并通过特定的公式计算, 从而得知3 个方向上的加速度大小。系统采用3 路10 位的AD 对输出的电压进行采样, 从而得到较为精确的电压值, 并在处理器内部通过一定的算法,把这3 个电压值换算成加速度值, 从而判断物体是否发生运动。

4

4 系统软件设计系统的处理器为A RM7 处理器, 并采用ECOS 嵌入式操作系统, 所有的软件都是基于ECOS 平台进行开发的。系统的软件架构如图5 所示。最底层的是位于硬件层之上的驱动层, 包括GPRS、GPS、传感器, FLASH 等一些驱动模块; 再上一层就是操作系统层, 这些模块都在ECOS 操作系统目录下而被ECOS 调用; 位于操作系统之上的即为应用层。应用层包含了系统要求的各项功能: 系统初始化、GPS 追踪定位、运动检测、用户命令处理等。图5 系统软件架构4. 1 追踪定位过程一般情况下, 系统处于休眠模式, 并侦听唤醒信号的到来, 一旦接收到唤醒信号, 开始检查物体是否被移动, 若没有移动, 则仍然用以前的位置信息作为现在的位置信息, 一旦检测到移动, 则马上启动GPS 模块, 实时获取当前的位置信息, 并覆盖以前的位置信息, GPRS 再把新获取的位置信息报告给上位机, 实现位置的实时跟踪。 用户是通过GPRS 远程控制系统的工作状态, 由于GPRS 不能一直处于网络连接状态, 用户什么时候发起通信, 这些都是未知的。因此, 系统必须为GPRS 模块设置一个工作状态, 定时的开启GPRS, 如果检测到有新的信息传来, 则让GPRS 进入工作状态, 接收并处理用户发过来的命令, 如果没有, 则继续进入休眠状态。处理完命令后, 更改并保存用户新设置的参数, 系统按照用户要求进入一个新的工作状态。此过程的工作流程图如图6 所示。图6 GPRS 工作流程#p#副标题#e#4. 3 上位机部分上位机主要功能是管理GPRS 终端设备, 通过T CP/IP 协议发送或接受数据包, 实现与终端的数据通信。上位机位于互联网上, 具有独立的IP 地址, GPRS 终端可以利用此唯一的的IP 地址寻找到上位机并发起通信。上位机开放特定的端口, 并一直对此端口进行侦听, 一旦收到终端发过来的请求, 便建立连接, 并开始进行通信。上位机的软件流程如图7 所示。

5

5 结束语采用基于GPRS、GPS 双网络结合的防盗追踪系统,相对于传统的防盗监控系统, 不但能实现远程实时监控的功能, 同时还能对于被盗设备能追踪定位, 对被盗设备的找回提供准确的位置信息, 从而挽救财产降低损失。目前GPRS, GPS , Internet 都是应用的十分广泛的技术, 采用这3 种技术的结合, 无疑是强强联手, 发挥出更强大的功效。

推荐信息