多语言展示
当前在线:572今日阅读:67今日分享:44

用几何绘图软件绘制连杆曲线

Matrix67曾经在他的博客里面说过,任意的代数曲线都可以用连杆作出来。这里,我们用几何绘图软件来绘制几个有趣的连杆曲线。        用几何画板绘制连杆系统,不同于简单的尺规作图。我们需要考虑实际可行性,如下面步骤3里面的画直线的连杆,在现实中就不可行,因为它只能画出一条线段。
工具/原料
1

电脑

2

几何画板或z+z超级画板

方法/步骤
2

画椭圆的连杆是怎样构造的呢?我们有椭圆规,椭圆规就是利用连杆的原理来绘制曲线的一个工具。前面写过《怎么用几何画板构造椭圆规》,这里用另一种方法画一个椭圆规,步骤大体上相同,只是稍微简单点。        以A为中心,作两条互相垂直的直线和一个圆;        取圆上的动点B;        作点B到两条直线的投影C、D(C、D分别位于两条直线上);        作直线CD;        取直线CD上的自由点E,E的轨迹就是椭圆;        连结线段AF(F为C、D的中点)。这就是椭圆规。        在《怎么用几何画板构造椭圆规》里面曾给读者提了一个问题:两射线夹角内有一个点M,过M作线段与两射线交于C、D,且CM:MD=AX:XB,其中,ABX是事先给定的线段。下面解答一下这个问题:        连结AM、XM;        过B作XM的平行线,与直线AM交于E;        过E作一条射线的平行线,与另一条射线交于D;        连结DM,与对面射线交于C;        此时必有CM:MD=AX:XB。

3

绘制直线的连杆,第一次看到这个东西是在matrix67的博客里,其实这是利用了圆的反演变换原理实现的。        给定A、B两点和线段GH、I J;        以A为圆心、AB为半径作圆A,取圆A的自由点C;        以B为圆心、I J为半径作圆B;        以C为圆心、GH为半径作圆C;        设圆B与圆C交于D、E;        分别以D、E为圆心,以GH为半径作圆,设两圆交于F;        当C在圆上移动时,F的轨迹就是“直线”(实际上只是一条线段);        可以证明B、C、F三点共线。        关于圆的反演变换,请参考《圆的反演变换及动态图演示》。你能够找到这个反演变换的反演中心和反演半径吗?        当C的移动超过一定范围,图形就会消失一部分。所以,这个例子不成功,还需要修改。

4

这里给出一个连杆系统,看看是否能够给出相应的连杆曲线的代数方程。        以O为原点,AB为x轴;        设OA=a,OB=b,AC=c,BC=d,AD=f;        A点在时间t的坐标是:(cost,sint);        那么可以求出点D在时间t的参数坐标。D的参数坐标,正是轨迹曲线的参数方程,消去参数t,就能够变成代数方程。        但由于具体的运算过程过于复杂,我试了一下就放下了。如果你有这个恒心,可以试试。

5

再构造一个连杆系统。不同的点绘制出不同的连杆曲线,读者如果有兴趣,可以尝试着求出它们的参数方程和代数方程。如下图:        固定两点O、B;        构造连杆系统OACB(这里,OA、AC、CB的长度都是固定不变的);        D点位于直线AC上;        E位于直线AC过A点的垂线上;        当A绕点O转动,D的轨迹是粉红色曲线,E的轨迹是浅绿色曲线;        改变D、E在直线上的位置,相应的轨迹也会随之改变。

注意事项
1

用几何画板作代数曲线,或许比绘制连杆系统容易得多,因为几何画板能够绘制参数方程的曲线,而连杆系统需要制成实物,需要考虑实际可行性,要具备的条件自然多一些。

2

学习连杆系统的最基本要求是,要能够根据不同情况,绘制出相应的图形。如果条件允许的话,可以制造出来。

3

构造出连杆系统,如果你能够给出相应的连杆曲线的方程式,那就算是入门了。

4

如果你能够根据不同的方程式,构造相应的连杆系统,使之能够绘制出方程式对应的曲线,那么你就“修炼到炉火纯青”

推荐信息